COLLABORATION SOFTWARE: COMMUNICATING IN REAL-TIME

With so much going on at UPI, the exchange of information is essential. Successful interaction between teams, with members often located in multiple time zones, means accessing, sharing, and retrieving data in real-time. Enter collaboration software - helping people working on a common assignment to achieve their goals. Alternative to the weighty process of back-and-forth email threads. Conversations, transactions, and collaborations, as they relate to specific projects, are shared with appropriate team members in real-time, assuring everyone who needs to be is aware of the progress.

They’ve Got Their Nose On - #REDNOSEDAY

Our Vernon, New York team got their noses on for the second year in a row. As participants in the annual Red Nose Day, May 25, the company joined millions across the globe supporting projects that ensure kids are safe, healthy, educated, and empowered. 2,659,642 children’s lives were impacted worldwide in 2016. In 1983, Comic Relief used the power of comedy to start the movement. The goal: To end child poverty one nose at a time. TV specials, ongoing fundraisers, corporate underwriting, and Red nose sales have raised over $1 billion globally. Red Nose Day in America funds programs in all 50 states. Since 2015, it has raised over $60 million. How does this help? Consider that our team’s participation this year provided nearly 600 meals for hungry children through Feeding America food banks. Congratulations!

WHAT’S NEW...

LP Unalon w/ PSA: NOW UP TO 96”

Expanded Capabilities
Benefit LP Customers

The recent installation of a colossal laminating machine at our Vernon, New York LP Unalon manufacturing facility continues to expand plant production capabilities. This new machine handles the application of Pressure Sensitive Adhesive, PSA, to LP material processing up to 96” wide.

CORROSION
What you need to know...

Corrosion, a natural process, is almost impossible to prevent, but it can be effectively controlled.

3D SURFACE PROFILING
Meets Hi-Tech Needs...

Industries requiring highly polished surfaces like optics and data storage, make micro-measurement of surface variations essential.

IS THIS THE RIGHT POLISH FOR MY APPLICATION?

Choosing the right abrasive and grit/particle size is essential. So, why the confusion when it comes to choosing an abrasive?

Ask An Expert: ON-SITE Q&A

Application engineers & polish technicians are on hand at every UPI trade show to address all surfacing questions. For upcoming shows visit:

www.universalphotonics.com/events

SURFACE APPEARANCE
FUEL CONSUMPTION
And The NUVITE Connection

Fuel is one of the highest cost items of an airline operation. From the distance an aircraft can fly, the amount of cargo it can carry, to its environmental performance, fuel efficiency is a leading consideration. A major contributor to fuel consumption is an aircraft’s surface characteristics. Paint, age, and condition weigh heavily on aerodynamic efficiencies. Enter NUVITE with products specifically engineered to maintain, restore a wide variety of exterior surfaces for optimal aerodynamics. As an aircraft moves through the air, air resistance and a resistance force, called drag develops, which impedes velocity and increases fuel consumption. One source of...
The turbulent layer is thicker, with an uneasiness, swirling airflow generating more skin-friction drag. While speed increases evenly in a laminar layer, most of the airflow's speed reduction occurs right above the surface where air molecules are in direct contact with the aircraft surface. Any disturbances along this surface including erosion, oxidation, abrasion, parasitic deposits, no matter how microscopic, can turn laminar flow turbulent. “Surface roughness is a major factor in generating friction-drag. Carbon deposits and other debris that remain or embed the surface can lead to higher temperature and more skin-friction drag. While speed increases evenly in a laminar layer, most of the airflow’s speed reduction occurs right above the surface where air molecules are in direct contact with the aircraft surface. Any disturbances along this surface including erosion, oxidation, abrasion, parasitic deposits, no matter how microscopic, can turn laminar flow turbulent. “Surface roughness is a major factor in generating friction-drag. Carbon deposits and other debris that remain or embed the surface can lead to higher temperature and more skin-friction drag.”

Laminar Flow Airplane Wing

The laminar flow airplane wing is designed to minimize drag and increase fuel efficiency. This wing design reduces turbulence and maximizes lift-to-drag ratio, allowing aircraft to fly at higher speeds with less fuel consumption. The smooth, curved surface of the laminar flow wing prevents the formation of separated flow, which is common in turbulent flow. This results in a more efficient flight pattern and reduced noise emissions. Laminar flow wings are commonly used in commercial and private aircraft, as well as in high-speed military applications. The design and engineering of laminar flow wings require careful consideration of aerodynamic principles and material properties to ensure optimal performance in various flight conditions. The development of advanced materials and technologies continues to push the boundaries of laminar flow wing design, enabling even more efficient and sustainable aviation solutions.